
REFRACCIÓN DE LA LUZ

La refracción se produce cuando el rayo luminoso incide en forma oblícua a la superficie de separación entre dos medios distintos.

ÍNDICE de REFRACCIÓN de la LUZ

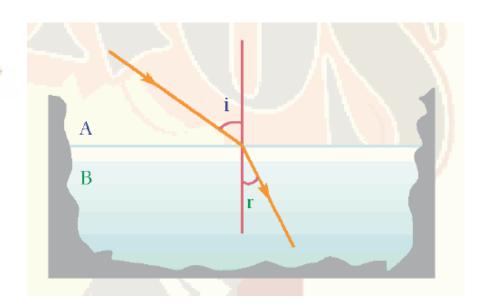
La relación entre la velocidad de la luz en el vacío y en un medio en el que pueda propagarse se denomina <u>índice</u> de refracción (n) de ese medio.

$$n = \frac{C}{V}$$

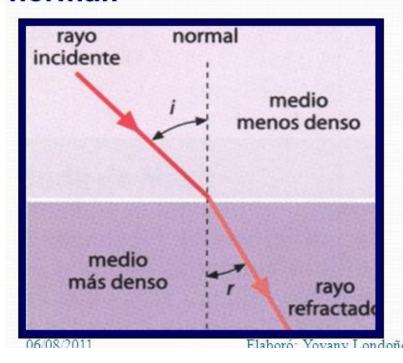
n = índice de refracción.

C = velocidad de la luz en el vacío 300 000 km/s

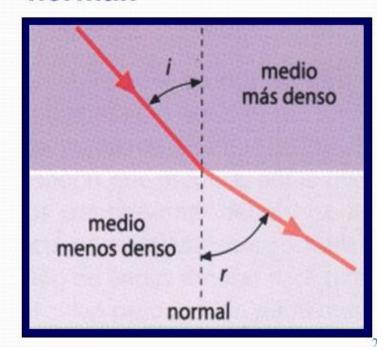
V = velocidad de la luz en el otro medio.


Sustancia	Índice de refracción
Agua	1,333
Aire	1,0003
Benceno	1,501
Etanol	1,361
Vidrio	1,58
Cuarzo	1,544
Hielo	1,309
Diamante	2,419

Leyes de la Refracción


- 1era Ley: "El rayo incidente, el rayo reflejado y normal trazados en el punto de incidencia están contenidos en un mismo plano"
- 2da Ley: Entre el ángulo de incidencia y el de refracción, existe la siguiente relación:

LEY DE SNELL


$$n_1$$
·sen i = n_2 · sen r

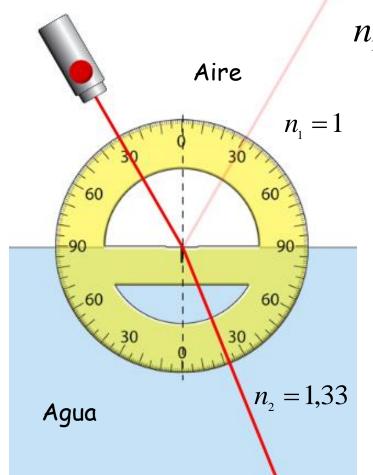
Si un rayo pasa de un medio menos denso a otro más denso (velocidad menor) se acerca a la normal.

Si un rayo pasa de un medio más denso a otro menos denso, el rayo se aleja de la normal.

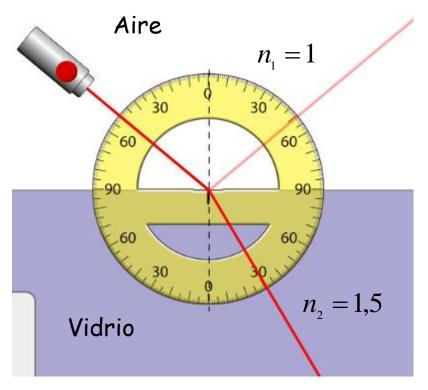
EJEMPLOS

A partir del dibujo, calcular el ángulo de refracción.

Ley de Snell


$$n_1$$
 sen $i = n_2$ sen r n_2 sen $r = n_1$ sen i

$$n_1 = 1$$
 $sen \ r = \frac{n_1 sen \ i}{n_2}$ $sen \ r = \frac{1 sen \ 30^{\circ}}{1,33}$


sen
$$r = \frac{10,5}{1,33}$$
 sen $r = \frac{0,5}{1,33}$

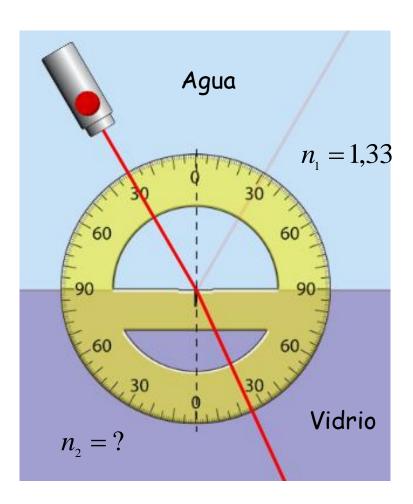
$$sen \ r = 0.376$$
 $r = sen^{-1}(0.376)$

$$r = 22,1^{\circ}$$

2. A partir del dibujo, calcular el ángulo de refracción.

Ley de Snell

$$n_2$$
 sen $r = n_1$ sen i


$$sen \ r = \frac{n_1 sen \ i}{n_2} \qquad sen \ r = \frac{1 \ sen \ 50^{\circ}}{1,5}$$

$$sen \ r = \frac{1.0,766}{1,5}$$
 $sen \ r = \frac{0,766}{1,5}$

$$sen \ r = 0,511$$
 $r = sen^{-1}(0,511)$

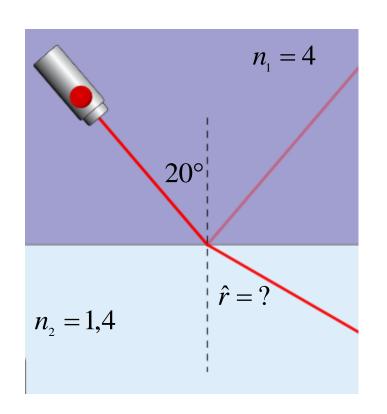
$$r = 30,7^{\circ}$$

3. A partir del dibujo, calcular el índice de refracción 2.

$$\hat{i} = 30^{\circ}$$
 $\hat{r} = 25^{\circ}$

Ley de Snell

$$n_2$$
 sen $r = n_1$ sen i


$$n_2 = \frac{n_1 \ sen \ i}{sen \ r}$$
 $n_2 = \frac{1,33. \ sen \ 30^{\circ}}{sen \ 25^{\circ}}$

$$n_2 = \frac{1,33.0,5}{0,423}$$
 $n_2 = \frac{0,665}{0,423}$

$$n_2 = 1,57$$

EJEMPLOS

. Un haz de luz pasa por un medio donde n₁= 4 a otro cuyo índice es n₂= 1,4 y la medida del ángulo de incidencia es 20°. Halla la medida del ángulo refractado.

Ley de Snell n_2 sen $\hat{r} = n_1$ sen \hat{i}

$$sen \hat{r} = \frac{n_1 sen i}{n_2} \quad sen r = \frac{4 sen 20^\circ}{1,4}$$

sen
$$\hat{r} = \frac{4.0,342}{1,4}$$
 sen $\hat{r} = \frac{1,368}{1,4}$

sen
$$\hat{r} = 0.977$$
 $\hat{r} = sen^{-1}(0.977)$

$$\hat{r} = 77.7^{\circ}$$

